Software QA FYI - SQAFYI

How to write near-perfect software

By: Charles FishmanTue

As the 120-ton space shuttle sits surrounded by almost 4 million pounds of rocket fuel, exhaling noxious fumes, visibly impatient to defy gravity, its on-board computers take command.

The right stuff kicks in at T-minus 31 seconds.
As the 120-ton space shuttle sits surrounded by almost 4 million pounds of rocket fuel, exhaling noxious fumes, visibly impatient to defy gravity, its on-board computers take command. Four identical machines, running identical software, pull information from thousands of sensors, make hundreds of milli-second decisions, vote on every decision, check with each other 250 times a second. A fifth computer, with different software, stands by to take control should the other four malfunction.

At T-minus 6.6 seconds, if the pressures, pumps, and temperatures are nominal, the computers give the order to light the shuttle main engines -- each of the three engines firing off precisely 160 milliseconds apart, tons of super-cooled liquid fuel pouring into combustion chambers, the ship rocking on its launch pad, held to the ground only by bolts. As the main engines come to one million pounds of thrust, their exhausts tighten into blue diamonds of flame.

Then and only then at T-minus zero seconds, if the computers are satisfied that the engines are running true, they give the order to light the solid rocket boosters. In less than one second, they achieve 6.6 million pounds of thrust. And at that exact same moment, the computers give the order for the explosive bolts to blow, and 4.5 million pounds of spacecraft lifts majestically off its launch pad.

It's an awesome display of hardware prowess. But no human pushes a button to make it happen, no astronaut jockeys a joy stick to settle the shuttle into orbit.

The right stuff is the software. The software gives the orders to gimbal the main engines, executing the dramatic belly roll the shuttle does soon after it clears the tower. The software throttles the engines to make sure the craft doesn't accelerate too fast. It keeps track of where the shuttle is, orders the solid rocket boosters to fall away, makes minor course corrections, and after about 10 minutes, directs the shuttle into orbit more than 100 miles up. When the software is satisfied with the shuttle's position in space, it orders the main engines to shut down -- weightlessness begins and everything starts to float.

But how much work the software does is not what makes it remarkable. What makes it remarkable is how well the software works. This software never crashes. It never needs to be re-booted. This software is bug-free. It is perfect, as perfect as human beings have achieved. Consider these stats : the last three versions of the program -- each 420,000 lines long-had just one error each. The last 11 versions of this software had a total of 17 errors. Commercial programs of equivalent complexity would have 5,000 errors.

This software is the work of 260 women and men based in an anonymous office building across the street from the Johnson Space Center in Clear Lake, Texas, southeast of Houston. They work for the "on-board shuttle group," a branch of Lockheed Martin Corps space mission systems division, and their prowess is world renowned: the shuttle software group is one of just four outfits in the world to win the coveted Level 5 ranking of the federal governments Software Engineering Institute (SEI) a measure of the sophistication and reliability of the way they do their work. In fact, the SEI based it standards in part from watching the on-board shuttle group do its work.

The group writes software this good because that's how good it has to be. Every time it fires up the shuttle, their software is controlling a $4 billion piece of equipment, the lives of a half-dozen astronauts, and the dreams of the nation. Even the smallest error in space can have enormous consequences: the orbiting space shuttle travels at 17,500 miles per hour; a bug that causes a timing problem of just two-thirds of a second puts the space shuttle three miles off course.

NASA knows how good the software has to be. Before every flight, Ted Keller, the senior technical manager of the on-board shuttle group, flies to Florida where he signs a document certifying that the software will not endanger the shuttle. If Keller can't go, a formal line of succession dictates who can sign in his place.

Bill Pate, who's worked on the space flight software over the last 22 years, says the group understands the stakes: "If the software isn't perfect, some of the people we go to meetings with might die.

Full article...


Other Resource

... to read more articles, visit http://sqa.fyicenter.com/art/

How to write near-perfect software